Faglige notater: TMA4105

Fra Nanowiki
Hopp til: navigasjon, søk

Faglige notater til Matematikk 2


Nablavektoren

Nablavektoren: <math>\vec{\nabla}</math>

Nablaoperatoren er definert som <math>\nabla f(x,y,z) =\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}</math>. En naturlig utvidelse av dette blir nablavektoren, definert som vektoren <math>\vec{\nabla} f(x,y,z) =[\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z}]</math>. Retningen til denne vektoren angir den retningen der funksjonen f(x,y,z) vokser raskest, mens verdien til vektoren angir hvor stor denne veksten er. Ved å følge nablavektoren vil man altså alltid komme til nærmeste ekstrempunkt i funskjonen. Dersom man setter f(x,y,z)=k, der k er en konstant, altså man lager nivåkurver i f(x,y,z) vil nablavektoren stå normal på disse nivåkurvene.

Dekomponering av akselerasjonsvektor

<math>\mathbf{a}(t) = v'(t)\mathbf{T}(t) + \kappa (t)v^2(t)\mathbf{N}(t)</math>


Diskriminanten i annenderiverttesten

<math>\Delta = AC - B^2\,</math> der <math>A = f_{xx},\,\,\, B = f_{xy},\,\,\, C = f_{yy}</math>


Sylinderkoordinater

Sylinderkoordinater: (<math>r,\,\theta,\,z</math>)

<math>x = r \cos{\theta}\quad y = r \sin{\theta} \quad z = z</math>

<math>r^2 = x^2 + y^2 \quad dV = r dz \,dr \,d\theta</math>


Kulekoordinater

Kulekoordinater: (<math>\rho,\,\phi,\,\theta</math>)

<math>x = \rho \sin{\phi}\cos{\theta}\quad y = \rho \sin{\phi}\sin{\theta} \quad z = \rho\cos{\phi}</math>

<math>\rho^2 = x^2 + y^2 + z^2 \quad dV = \rho^2 \sin{\phi} \,d\rho\, d\phi \,d\theta</math>


Flateintegral

<math>d\sigma = \left|\mathbf{N}(u,v)\right|\,du\,dv = \left|\frac{\partial\mathbf{r}}{\partial u}\times \frac{\partial \mathbf{r}}{\partial v}\right|\,du\,dv</math>


Tyngdepunkt og treghetsmoment

<math>\bar{x} = \frac{1}{m} \int \!\!\!\! \int \!\!\!\! \int_T x \, dm \quad \bar{y} = \frac{1}{m} \int \!\!\!\! \int \!\!\!\! \int_T y \, dm \quad \bar{z} = \frac{1}{m} \int \!\!\!\! \int \!\!\!\! \int_T z \, dm \quad dm = \delta(x,y,z)\,dV</math>

<math>I_x = \int \!\!\!\! \int \!\!\!\! \int_T \left( y^2 + z^2 \right) \, dm \quad I_y = \int \!\!\!\! \int \!\!\!\! \int_T \left( x^2 + z^2 \right) \, dm \quad I_z = \int \!\!\!\! \int \!\!\!\! \int_T \left( x^2 + y^2 \right) \, dm \quad I_L = \int \!\!\!\! \int \!\!\!\! \int_T R(x,y,z)^2 \, dm \quad</math>

Vektoranalyse

Greens teorem

<math>\oint_C P \, dx + Q \, dy = \int \! \! \! \! \int_R \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA</math>

Divergensteoremet

<math>\int \!\!\!\! \int_S \mathbf{F}\cdot\mathbf{n}\,d\sigma = \int \!\!\!\! \int \!\!\!\! \int_T \operatorname{div}\, \mathbf{F}\,dV</math>

Stokes' teorem

<math>\oint_C \mathbf{F} \cdot \mathbf{T}\,ds = \int \! \! \! \! \int_S \operatorname{curl}\,\mathbf{F} \cdot \mathbf{n}\,d\sigma</math>